
Billiards Everything Instruction

Contents

1 Installation 3
1.1 Prerequisite . 3
1.2 Installing instruction . 3

1.2.1 For Windows . 3
1.2.2 For Linux . 3
1.2.3 For Mac with an intel chip 4
1.2.4 For Mac with an arm chip 4

2 User’s guide 5
2.1 Database . 6
2.2 Main interface . 7

2.2.1 Section categorization 7
2.2.2 Tools . 7

2.3 Iteration Window . 10
2.4 Cover . 11
2.5 LiCover . 13
2.6 LiPattern Iteration Window 13
2.7 Triple Window . 15
2.8 VaryL Window . 15
2.9 MVL Window . 16
2.10 LiLuMaxVary Window . 17
2.11 SuperLiLuVary Window . 18
2.12 LiPattern Calculator . 19
2.13 LiBain Tetra/Bar . 20
2.14 LiCycle . 21

3 How to be a periodic path hunter 23
3.1 Identify your given open space 23
3.2 Filling in spaces/hole (Stables) 24

3.2.1 Menu - PolyVary . 24

1

3.2.2 Menu - Side Sum . 25
3.2.3 Menu - Match V3/Save V3 25

3.3 Filling in spaces/holes (triples) 26
3.4 Finding more holes to fill . 27
3.5 What should a great periodic path hunter do next 28
3.6 Bonus fun on iterations . 29

2

Chapter 1

Installation

1.1 Prerequisite

The program is working on Windows, Linux Ubuntu 22.04 LTS and Mac.

1.2 Installing instruction

First, download the respective version of Billiards Everything for your OS
system here.

1.2.1 For Windows

For windows, there is no need to set things up.

Step 1. Unzip the zip file

Step 2. Double click the billiard-viewer.bat file to run it.

Step 3. There should be a blue window pops up the first time you run it.
Click on ”more info” and then ”run anyway”.

1.2.2 For Linux

Step 1. Ubuntu 18.04LTS is not supported.Check your system using $ cat
/etc/os-release

Step 2. Unzip the zip file

Step 3. Open a terminal, locate yourself inside the folder, and then type in:
$ chmod +x ./run.sh java/bin/*

Step 4. launch the programme: $./run.sh

3

https://sourceforge.net/projects/billiards-everything

1.2.3 For Mac with an intel chip

a. Setup

Step 1. Install Java (if you already have java, just check the version as below)
in the terminal, enter ”java -version” The output should be similar
to this:
java version ”1.8.0 66”
Java(TM) SE Runtime Environment (build 1.8.0 66-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.66-b17, mixed mode)
If not, try this: /usr/libexec/java home -v 1.8.0 66
If it works, add the following to ∼/.zshrc
export JAVA HOME=$(/usr/libexec/java home -v 1.8.0 66)
Otherwise you need to install the correct version of Java here (version
8u66). You need to make an account to download it.

Step 2. Use homebrew to install dependencies (enter ”brew” in the terminal
to see if you already have brew). If don’t then you can download it
from their website.
Enter these commands in th terminal after you have brew
$ brew install git gmp mpfr boost tbb@2020 jemalloc
$ brew link tbb@2020

Step 3. Create a symbolic link to tbb@2020 (use the command below) by
typing the command in the terminal
$ ln -s /usr/local/opt/tbb@2020 /usr/local/opt/tbb

b. Run

Open a terminal, enter ”java -jar ” and then drag the jar inside the down-
loaded unzipped folder from sourceforge into the terminal and press enter.

1.2.4 For Mac with an arm chip

a. Setup

Step 1. Download and install the installer

b. Run

Go to application and right click on BilliardViewer and open a terminal at
the folder. Next navigate using command cd Contents/MacOS/ Next open
application with command ./BilliardViewer Allow appropriate permission in
case system blocks it.

4

https://www.oracle.com/ca-en/java/technologies/javase/javase8-archive-downloads.html
https://docs.brew.sh/Installation

5

Chapter 2

User’s guide

2.1 Database

6

When you start the program, a small database menu will pop up to allow
you to pick a database to store your code sequences using sqlite.

In the image above, the ”test” database is already created. If a database
has not been created yet, then click on ”New” to create a new one.

After creation, to open it, click on that database and then ”Select” to
use that database.

”Delete” will simply delete a database completely, while ”Clear” will clear
all the contents stored in that database.

2.2 Main interface

2.2.1 Section categorization

1 - Tools: What you can do in this program

2 - Viewer: Show results

3 - Mouse coordinates: Show your mouse coordinates

4 - Code sequences: Show the code sequences

2.2.2 Tools

In this section, we will focus on what each button do in the tools section.

7

1. a. Code seqence Box(triples require commas)

b. Calculate Using Code Sequence, when clicked the Iteration Window
will appear

c. Zoom The Code Sequence

2. a. Reflect the Viewer

b. Permutes x,y,z coordinates

c. Information about the Code Inputted

d. Li Pattern Calculator

e. Li Pattern Iterator

3. a. Colour of the Regions in Viewer

b. Clears Viewer

c. Resets to Default

4. X Y Coordinates

5. a. LiCycle

b. SuperLiLuVary

c. Subdivision step

d. Use LiLuMaxVary with SuperLiLuVary

6. a. LiLuMaxVary

8

b. start end LiLuMaxVary

7. a. LiMVL

b. VaryL

c. Maximum Number of Regions Drawn From Coordinates of VaryL,
or maximum number of groups to print for Li1MVL.

d. BoyanVary

e. Maximum Number of Subdivisions for BoyanVary

8. Code type

9. a. LiMV. Same as Vary but prints only the first, middle, and last code
sequences of each group. Code sequences that have the same code
type, code length, and odd-even pattern belong to the same group.

b. Finds Codes and the number represents the Number of Codes Found
after done

c. Min Max Side Sum

d. Number of Shots

10. a. Creates Polygon Vertices Coordinates

b. Total Number of Selected Polygons

c. Colour of Cover Squares

d. Cycles the Colours in the Cover

11. a. LiBain Tetra/Bar

b. Merges Abutting Covers

c. Loads a Previous Cover

d. Draws Selected Bounding Polygon

12. Load One By One File

13. a. Triples, when clicked the Triple Window will appear

b. Direction of One By One

14. Center the Viewer at the Coordinates

15. a. LiCover

b. Cover a Polygon with Stables and Triples, when clicked the Cover
Window will appear

c. Draws Codes From a Selected File

9

d. Find Intersecting Code From Clicked Location

e. Save Code

16. Select and Press on Viewer

17. a. Zoom Times Size

b. Undo Redo Viewer

2.3 Iteration Window

1. Increase/Decrease code Individually By 2

2. a Look up the iteration patterns used with the current code sequence
in the past.

b Intersect with a polygon. Code sequences that intersect with the
polygon will be automatically added to the cover along with their
iteration pattern.

c Open a new window to specify the polygon to check intersections.

d When calculating iterations, the maximum number of codes to
add to the cover.

3. a Add 2/Subtract 2 at specified positions (for triples separate by
comma)

b Add 2/Subtract 2 and Add -2/Subtract -2 at specified positions
(for triples separate by comma)

4. a. Put in specified positions (for triples separate by comma)

b. Put in specified number of iterations

10

c. Put in specified increment

5. a. Put in specified positions (for triples separate by comma)

b. Put in specified number of iterations

c. Put in specified increment

d. Press the button to calculate add/subtract iterations

6. a. Put in valid horizontal pattern code

b. Put in specified number of iterations

c. Put in specified pattern of each element

d. Press the button to calculate Expando iterations

7. Code Sequence Box (triples require commas)

8. Label (Not required)

9. Calculate iterations using 3 and 7

10. Options for the iterations (read instructions)

2.4 Cover

In Cover, you want to have a polygon, which is the region you want to cover
it completely with periodic paths, hence the name Cover.

11

• Polygon: the area you want to cover, for example

5 5

5 6

6 5

is the area of the triangle with those 3 vertices.

• Stables: side sequences that cover some part of the region

• Triples: triples that cover some part of the region

• MRR/All: Choosing the all options from the radio button to find all
equations including the MRR equations and guarantees every square
will satisfy the gradient algorithm.

• decimals: how accurate you want to be

• magnification: square division

• Calculate button: start covering the region with the code you put in
stables and triples.

12

• empty squares: the number of empty squares that you are looking to
find

• label: label your progress

• Add to Small Cover: add empty squares to LiCover

2.5 LiCover

Everything in the LiCover is the same as in Cover, except for the rep-
resentation of the polygon, or more accurately, the squares. The squares
in LiCover are each represented by four numbers, where each number is a
fractional value of π

2 . The first two numbers are the two boundary points
of the x-interval of the square, whereas the last two numbers are the two
boundary points of the y-interval. In addition, you can put multiple squares,
each occupying a separate line. The LiCover is especially useful for checking
whether a small empty square has been covered without running the check
on the entire region.

2.6 LiPattern Iteration Window

1. Find iteration patterns for code sequences.

a Put stable code sequences in the ”+ Stables” text box if you want
LiPattern to find all positive iteration patterns for the stable code
sequences; put them in the ”+/-” text box if you want LiPattern
to find plus/minus iteration patterns.

13

b Do the same for unstable code sequences. Use the ”+ Unstables”
and ”+/- Unstables” text boxes.

c Put triples in the ”Triples” text box.

d Press the ”Find Pattern” button. The iteration patterns will ap-
pear behind each code sequence, prefixed by a ”&”.

e You can also look up previously used code sequence-iteration pat-
tern pairs using the ”Lookup” button.

2. Enter the coordinates of the polygon you wish to cover.

3. Enter the iteration limit (Element 1 in the above figures). This is the
maximum number of times you want the iteration patterns applied to
the code sequences.

4. Press the ”Run” button. For each code sequence, LiPattern will apply
its iteration pattern for the maximum number of times that was spec-
ified in the previous step both in the forward direction (addition) and
the backward direction (subtraction). Each new code sequence that
intersects with the polygon will be drawn on the viewer and added to
the cover.

14

2.7 Triple Window

The triple window will pair up 2 stables with 1 unstables to find a triple.

2.8 VaryL Window

To run VaryL, you first have look at this. You will see a set of coordinates
after pressing Calculate. Copy those coordinates into the box and press the
varyL button as the program will run vary on all those coordinates. Codes
that are found will go directly into your cover. You can also specify seperate

15

maximums for side sum and code length. To override side sums, you must
check the box labeled ”Override side sum”.

1. a Add code sequences to the Cover.

b Add code sequences to LiCover

c Add code sequence-iteration pattern pairs to the ”+ Stables” text
box of LiPattern Iteration Window

d Add code sequence-iteration pattern pairs to the ”+/- Stables”
text box of LiPattern Iteration Window

2. Same as Tools 12B

2.9 MVL Window

Everything is the same as VaryL Window except that it separates code
sequences into groups that are characterized by code type, code length, and
odd-even pattern, and only prints the middle code sequence of each group (as
well as the first and last code sequences if ”Include first and last” is checked).
The number of groups to print is specified Tools 7C.

16

2.10 LiLuMaxVary Window

To run LiLuMaxVary, you first have to look at this. You will see a set
of coordinates after pressing Calculate. Put those coordinates in an empty
file and then use ”Load one by one file” in the tools menu to load that file.
Then open the LiLuMaxVary window and press AutoVary as the program
run BoyanVary on all the coordinates in the file. Codes that are found will
go directly into your cover. You can also specify separate maximums for side
sum and code length. To override side sums, you must check the box labelled
”Override side sum”.

1. a i. Regular: Print everything.

ii. Middle: Same as MVL.

iii. First, Middle, Last: Same as in MVL with ”Include first and
last” checked.

b For ”Regular”, the maximum number of code sequences to print.
For ”Middle” and ”First, Middle, Last”, the maximum number of
groups to print.

2. Same as VaryL Window 1

17

2.11 SuperLiLuVary Window

SuperLiLuVary allows you to run either BoyanVary or LiLuMaxVary mul-
tiple times. This is useful for automating large portions of covers. First, put
a non-negative integer in the box labelled ”Reps” to denote how many times
you want it to run. Then set the initial code length and side sum, as well
as the step, which will be added to the initial side sums after each iteration.
The initial values must be non-negative integers, the step can be any integer,
including negative values. Codes that are found will be added directly to
your cover. You can also check the check box labelled ”Magnification” to
magnify the viewer by the specified factor after every rep. Magnifying the
viewer is especially useful when you are trying to fill in smaller and smaller
holes.

18

2.12 LiPattern Calculator

Calculates the iteration pattern between two code sequences with the
same code length and odd-even pattern. Put the two code sequences on two
separate lines in the text box, and press ”Calculate Pattern”. The iteration
pattern will be printed on the console.

19

2.13 LiBain Tetra/Bar

1. Offset: the value to offset the original coordinate by to create new
points.

2. The maximum number of codes to print.

Enter the coordinates of the points you want to cover in the text box and
press ”Calculate”. Vary will run on the two (if ”Bar” is selected) or three (if
”Tetra” is selected) new points that were created using the offset value. This
is useful when you cannot find code sequences that cover the original point,
but code sequences that cover the points around it also cover the original
point.

20

2.14 LiCycle

LiCycle performs either LiLuMaxVary or SuperLiLuVary on the coordi-
nates of the empty squares each cycle. At the end of each cycle, coordinates
in the ”Coordinates” text box will be replaced by new coordinates (if there
are more empty squares to be filled).

1. a Same as Tools 6B

b Same as Tools 13B

2. Same as LiLuMaxVary Window

3. a Same as Reps in SuperLiLuVary Window

b Same as Magnification in SuperLiLuVary Window

c Same as Tools 7E

d Same as Tools 5C

4. Same as the steps in SuperLiLuVary Window

5. a Same as LiLuMaxVary Window 1A

21

b Same as LiLuMaxVary Window 1B

6. Same as VaryL Window 1C and 1D.

7. a Same as Tools 8

b Same as Tools 9D

8. a Maximum number of cycles.

b Maximum number of new coordinates at the end of each cycle.

c Changes the number of coordinates in the next cycle.

d Changes the magnification value of Cover at the end of each cycle.

22

Chapter 3

How to be a periodic path
hunter

This chapter will assume that you have contacted George Tokarsky. He will
give you coordinates so you can find the periodic path in the given space.

3.1 Identify your given open space

Step 1. Your polygon (or quadrilateral) coordinates will be given as below
when you contacted George Tokarsky or you can just create one in-
dependently, they are the coordinates of the vertices of your polygon.
For example:

8 58

9 57

9 55

8 56

Step 2. Now go to the tools menu and click on ”Cover” in the bottom left
region. These polygon coordinates should then be copied and pasted
into the first big input box with the hint ”Polygon”. This is the first
of three big input boxes titled polygon, stables, triples.

Step 3. Look towards the bottom of the Cover pop-up and make sure MRR is
selected and use these suggested numbers as follows 22 20 [Calculate]
50 respectively.

Calculate is used to outline your polygon and to find uncovered holes
in the viewer. The 3 numbers around the calculator button are
specifications.

23

First small box is the number of decimal places, which you do not
need to change.

Second small box is the number of subdivisions, which you may need
to change or increase towards the end of covering the polygon.

Third small box is the list of point coordinates displayed where those
points are not covered. Generally 50-100 points is good enough for
a single session to start. Eventually you will need to use thousands
of points and leave the program run overnight or longer.

3.2 Filling in spaces/hole (Stables)

There are many ways of filling empty space. The possible ways of filling
spaces will be loosely ordered by the size of the holes to fill.
Most values, such as subdivisions and side sum or code sum are dependent
on your processor specs. Loose ranges and example values will be called
low, medium or high and will be specified in the steps below. Here, we will
introduced severeal tools to fill in spaces/hole

3.2.1 Menu - PolyVary

Generally used for a new polygon.

Step 1. Subdivision should be set to a low-medium range (3 - 5).

Step 2. Side sum should be of medium range (800 - 1200).

Step 3. CS should be selected first.

Step 4. Do not forget to change your number of cores beside ”Shots”.

Step 5. Click on BoyanVary and put in the given polygon coordinates ap-
pearing there and press the Vary button seen inside.

Step 6. Copy all code sequences that show up in the console.

Step 7. Paste these code sequences into the second big input box under Cover
(if it is empty then there will be a hint text that says stables.)

Note: Increasing the subdivisions, side sum or code sum can help find
smaller holes, as well as zooming to enlarge the viewer with empty space
which can help to find more code sequences but in return will take longer.

24

3.2.2 Menu - Side Sum

When the side sum is over 1000 or so, it could be time to increase your point
coordinates into the thousands.

Step 1. Put your coordinate list inside varyL and press the varyL button
inside.

Step 2. Make sure that you check the box on Draw.

Note: the max boxes are in code sums not side sums.

A typical start is CS max 333 and increase that as needed up to the
500’s.

For the OSO max use a range of 122-166 or so and for the OSNO
use a range of 50-136 or so.

Caution: The checkboxes in the Tools Menu should be on for the CS
first, then with the CS and OSO on and then lastly with the CS,OSO
and OSNO on.

3.2.3 Menu - Match V3/Save V3

This tool can be used to find holes individually. It should be used when
almost finished with the cover but can be used whenever the user likes to.

Step 1. Side sum should be set to between 2000 to 5000

Step 2. Make sure that CS is the only code type selected as the other two
types take much more time.

Step 3. Zoom in enough to see the hole.

Step 4. Make sure Match V3’s checkbox is checked. Click Select as the radio
option.

Step 5. Click on the corners of the given empty space on the viewer. Match
V3 will find the common sequences of all the coordinates clicked on
the viewer.

Step 6. Next, check the console for something similar:
//———————- Matching Code Sequences ———————-//

CS (56, 384) 1 1 6 2 20 2 9 1 2 1 19 2 8 2 19 1 2 1 9 2 20 2 6 1 1 19
2 8 2 20 2 8 2 20 2 7 1 3 20 2 8 2 20 3 1 7 2 20 2 8 2 20 2 8 2 19

25

CS (88, 412) 1 1 4 1 1 18 1 1 4 1 1 18 1 1 4 1 1 18 1 1 4 1 1 18 1 1 4
1 1 18 1 2 1 10 1 2 1 19 3 1 7 2 19 1 2 1 10 1 2 1 18 1 2 1 10 1 2 1
18 1 2 1 10 1 2 1 18 1 2 1 10 1 2 1 19 2 7 1 3 19 1 2 1 10 1 2 1 18

...

Step 7. Copy a single code sequence and put it in the sequence drawer and
click on ”Calculate”.

If the code sequence covers what you wish it to cover, then put it in
the ”Stables” input box in Cover(second input box).

If it does not cover what you wish, you can either try the next match-
ing sequence or you can keep the sequences and repeat this process
for the smaller empty space.

Alternatively you can also save them all together in any file you
choose by pressing Save V3 and load

them all when ready by pressing the load button.

If the hole looks like a line, you can click on both sides of the line to
see if there is any matching code

sequences. You can also try using a triple below.

3.3 Filling in spaces/holes (triples)

These holes are very long rectangles that look like lines. A triple is just a
combination of stable, unstable, stable codes.

Example of a triple with commas:
1 1 10 2 23, 1 2 1 13 2 20 2 13, 1 1 12 2 20 2 13 1 2 1 13 2 20 2 12 1 1 23

2 12 2 20 2 12 2 23
To find the two stables, click one side of the line and then the other side

and you should get the two stables as long as they intersect in a common
boundary line.

To find the unstable involves loading low side sum (100 should be good
enough) CNS and ONS and

connecting the existing sequences to the left and right of the CNS/ONS
sequence found.

To find the unstable use the two radio buttons next to the two rows of
coordinates near the top in the Tools

Menu.
1. Click on the first radio button and click on one end of the line (a close

approximation is all you need)
and its coordinates will appear.

26

2. Click on the second radio button and click on the other end of the line
and its coordinates will appear.

3. Change the Side Sum to 144 or so and only have the CNS and ONS
check boxes selected.

4. Press Vary and you will see a list of unstables in the console.
5. Copy all the code sequences found into a text file which we will call

lines.txt
6. Click ”Load File”. Find and click on lines.txt. (some will say empty

and others don’t work).
7. Go back to the viewer and click anywhere on the given line. Find any

CNS or ONS that appears in the
Coordinate/Codes Column underneath the coordinates.
If none appears, try again with a bigger Side Sum and more shots. Hope-

fully you will find one and you
can take the first unstable in the list.
Now go to the Tools Menu under Cover, paste the sequence stable, un-

stable, stable in the third input box
as with the example and with the hint triples.
To double check you can copy the triple sequence into the box next to

Calculate in the Tools Menu to see
if the line has been filled or partially.
Alternatively if using a triple, you can try using a stable OSO or OSNO

to cover that line.

3.4 Finding more holes to fill

After following Identify your given open space.

Step 1. Go to ”Cover” in the bottom left of the tools menu and click on the
Calculate button

Step 2. Go to the console. Within the generated text should be something
similar

1653711 stable squares used in the cover

0 triple squares used in the cover

2310 stables used in the cover

0 triples used in the cover

MRR at 22 decimals, deepest magnification 27

Total stable cost: 831208131

27

485334 squares were not filled in

8.2754087448120117 57.724614143371582

8.2933473587036133 57.561535835266113

...

Not Covered

Time elapsed: 22m 20.514s

Step 3. Copy all pairs of coordinates and paste into an accessible text file.

Step 4. From the Tools Menu, go to ”Load One By One File” and choose
the text file that contains all the copied coordinates. The viewer will
automatically move to the first coordinate in the text file. To go to
the next pair of coordinates, click on ”OBO Forward”. Repeat filling
the holes until the given polygon is covered. When done the console
should say ”Covered” like this:

// 0 squares were not filled in

// 1111 stable squares used in the cover

// 24 triple squares used in the cover

// 31 stables used in the cover

// 2 triples used in the cover

// MRR at 7 decimals, 1x1 number of squares, deepest magnification
17

// Total stable cost: 65809

// Covered

// Time elapsed: 0.128s

Note: you can use VaryL, MVL, LiLuMaxVary, and SuperLiLyVary
with Tools 5C checked to do the steps automatically.

3.5 What should a great periodic path hunter do
next

Go to the jar called Billiards Everything and you will find a folder called
Cover. Send that to me and I will check it and run it to the All proof that
goes through all the equations and we will add your name, date and cover
to the Great Hunt. You can do that yourself if you wish by checking the
All check box instead of the MRR check box. If you do, be prepared that

28

it could take 20 times or more and days or weeks or months or years. To
ensure that the polygon assigned is full look for two things:

// 0 squares were not filled in
// 1111 stable squares used in the cover
// 24 triple squares used in the cover
// 31 stables used in the cover
// 2 triples used in the cover
// MRR at 7 decimals, 1x1 number of squares, deepest magnification 17
// Total stable cost: 65809
// Covered
// Time elapsed: 0.128s

This shows that your polygon is covered, and I will run the proof to ensure
that the polygon has been fully covered.

3.6 Bonus fun on iterations

Iteration

When you put in a code which can be a stable, a non-stable or a triple and
press Calculate, the iterations bar comes up.

If you use a triple, you will see six rows of boxes, three green and three
pink. Otherwise you will see two rows of boxes. Pressing a green increases
the code by two and pressing the pink decreases the code by two.

Alternatively you can use the Add 2/Subtract 2 boxes to change a given
code. In the empty box to the left, if you put in for example 3 6 10 then the
3rd, 6th and 10th code number will add 2 or subtract 2 to those spots.

Similarly for triples if you put in 3, 2, 3 5 and press add 2 it will add 2
to the 3rd spot of the first stable, add 2 to the 2nd spot of the unstable and
add 2 to the 3rd and 5th spots of the other stable.

You can also create patterns using the next three horizontal lines of boxes.
For example using the First Pattern box and putting in 3 6 10 for those
spots, and putting 12 in the second box will give the number of iterations
and putting 6 in the third box will give the increment to all of those spots.
Then press the button Calculate Iterations and you will see in the viewer all
those regions belonging to all of those codes.

Furthermore, there are also four options you can choose from for calcu-
lating iterations:

First is the ‘no left rights’ option which means it doesn’t use any previous
left rights equations in the calculation for the following iterations, and then
each time it calculates and uses the current left rights equations which will
take the longest time.

29

The second is ‘show left rights’ which does the same as the first but will
also print out the left rights for each code in the iterations in the console.

The third option is ‘use left rights without test’ which means using the
left rights found in the previous iterations in the calculation for the following
iterations and thus it does NOT always give you the correct result. The trade
off is if you trust the pattern, then this is the fastest option.

The last option is ‘use left rights with test’ which means using left rights
found in the previous iteration in the calculation for the following iterations
with a test. This test can filter out many wrong results and then use the
normal method to calculate instead. It is the second-fastest option but again
is not foolproof.

NOTE: the third and the fourth option works with only the stable codes
and doesn’t work for the unstable codes.

Expando Iterations

Expando iterations are used when the code sequences expand horizontally in
a pattern and where the left rights of the code sequences also have a pattern.
Here is an example:

1 1 2 2 1 1 3 3
1 1 2 2 2 2 1 1 3 2 2 3
1 1 2 2 2 2 2 2 1 1 3 2 2 2 2 3
... Left Right
(2, 0, 7, 0)
(8, 0, 5, 0)
(8, 0, 1, 0)
(4, 0, 1, 0)
Left Right
(2, 0, 9, 0)
(10, 0, 7, 0)
(10, 0, 1, 0)
(4, 0, 1, 0)
Left Right
(2, 0, 11, 0)
(12, 0, 9, 0)
(12, 0, 1, 0)
(4, 0, 1, 0)
...
To use and press the Calculate expando iteration button, put in the

expando pattern box a pattern substituted with the capital letters.

30

For example input 1 1 2 2 A 1 1 2 2 B 1 1 2 2 A in the Expando pattern
box and put in the elements box for example: 2 2,2 2 separated by commas
with A becomes 2 2 and B becomes 2 2. This also allows expanding patterns
involving A,B,C,...

The Expando iteration has only two options to use:
a. use ’left rights with test’ means all the code sequences in the iterations

are calculated the normal way which is the slower method and this acts as
the test.

b. use ’left rights without test’ means using the left rights found in the
previous iteration in the calculation for the following iterations. Again this
is not foolproof

31

	Installation
	Prerequisite
	Installing instruction
	For Windows
	For Linux
	For Mac with an intel chip
	For Mac with an arm chip

	User's guide
	Database
	Main interface
	Section categorization
	Tools

	Iteration Window
	Cover
	LiCover
	LiPattern Iteration Window
	Triple Window
	VaryL Window
	MVL Window
	LiLuMaxVary Window
	SuperLiLuVary Window
	LiPattern Calculator
	LiBain Tetra/Bar
	LiCycle

	How to be a periodic path hunter
	Identify your given open space
	Filling in spaces/hole (Stables)
	Menu - PolyVary
	Menu - Side Sum
	Menu - Match V3/Save V3

	Filling in spaces/holes (triples)
	Finding more holes to fill
	What should a great periodic path hunter do next
	Bonus fun on iterations

